# Breeding biology of the Starling Sturnus vulgaris in western Finland

Erkki Korpimäki

KORPIMÄKI, E. 1978: Breeding biology of the Starling Sturnus vulgaris in western Finland. — Ornis Fennica 55:93—104.

The breeding biology of the Starling was studied in Kauhava, western Finland (63°05'N, 23°06'E). Some data were also collected elsewhere in Kauhava and in the main village of Lapua. This paper is based upon 239 nesting records made over the years 1966—77.

The Starling population studied was much smaller in the 1970s than in the 1960s. This may be due to changes in agriculture and persecution in wintering areas. The median date of the first egg varied from 30 April to 8 May (the median for 12 years was 5 May). The number of eggs ranged from 2 to 8, averaging 5.12. The clutch size decreased linearly throughout the breeding season. Incubation usually took 12 days and the nestling period was 20 days. Losses during incubation were greater than during the nestling stage. The mean production was 3.6 juveniles from each nest started. Being a southern species, the Starling was found to be greatly affected by temperature, which, directly or indirectly, regulates the timing of breeding, the clutch size and breeding success.

Erkki Korpimäki, kp 4, SF-62200 Kauhava, Finland

## Introduction

The Starling Sturnus vulgaris is a southern species which did not spread to Scandinavia until the early 1800s (v. HAARTMAN et al. 1963—72). It is a true cultural species, though the nesting sites may be situated several kilometres away from the inhabited areas where it feeds (e.g. PALMGREN 1930, TENOVUO & LEMMETYINEN 1970).

The breeding biology of the Starling has been much studied in Central Europe, the British Isles and North America (e.g. KLUIJVER 1933, SCHNEI-DER 1952, 1957, 1960, 1972, LACK 1948, DUNNET 1955, ANDERSON 1961, HAVLIN & FOLK 1961, PIKULA & FOLK 1970, KESSEL 1953, 1957, COLLINS & DE VOS 1966, ROYALL 1966, CROSSNER 1977, LUNIAK 1977). In Finland, information on the breeding of this species is scanty (e.g. v. HAARTMAN 1969, KORPIMÄKI 1969, 1975, TENOVUO & LEMMETYINEN 1970, ALATALO 1975, OJANEN et al. 1978a).

The aim of the present study is to supplement our knowledge of the breeding biology of the Starling in Finland and to make some comparisons with the results obtained in Central Europe.

## Material and methods

The data were collected in the province of Southern Ostrobothnia, western Finland. The main study area was in the village of Ruotsala in Kauhava commune  $(63^{\circ}05'N, 23^{\circ}06'E)$ , where most nest-boxes were situated. In addition, breeding was investigated in the nearby village of Varpula and in some remote fields in Kauhava. In Lapua town Starlings were studied in the main village. All the nests in inhabited areas were in yards surrounded by fields.

During the first years of the study, the nest-boxes were inspected nearly every day. In later years the nests were observed at suitable intervals to determine the onset and end of egglaying, size of the completed clutch, and number of young hatched and fledged.

The data were collected over the years 1966—77 and comprise observations on 239 nests. Of these, 129 are from the main area, 81 from other yards and 29 from remote fields. The number of nests was highest in 1968 and 1977 (42 and 43, respectively) and lowest in 1970 (7). The methods used to estimate breeding parameters were similar to those used by v. HAARTMAN (1969).

## Results

The date of arrival and beginning of breeding. The onset of breeding in each year was taken as the date on which the first egg was laid in the main area. This date has been compared with the arrival of the first Starling in the area (Table 1).

The date of arrival ranged from 14 March in 1967 to 10 April in 1976, with a mean date of 25 March. The onset of egg-laying varied correspondingly from 26 April in 1968 to 5 May in 1970, the mean being 30 April. On average there was more than one month between the arrival of the first Starling and the first egg laid.

The date of arrival and the onset of egg-laying are marginally positively correlated (r = 0.32), though this correlation is not significant. Hence, it is not possible to forecast accurately the timing of breeding from the beginning of spring migration. This is because the species arrives in the area a month before the breeding season and during this period the weather can vary widely.

Size of the breeding population. In the main area the number of nestboxes, the number of nests and the percentage of nest-boxes occupied were:

| Year         | Boxes    | Nests    | % occupied |
|--------------|----------|----------|------------|
| 1966         | 11       | 9        | 81         |
| 1967<br>1968 | 17<br>17 | 11<br>13 | 65<br>76   |
| 1968         | 19       | 16       | 84         |
| 1970         | 19       | 12       | 63         |
| 1971         | 19       | 14       | 74         |
| 1972         | 20       | 15       | 75         |
| 1973         | 20       | 13       | 65         |
| 1974         | 19       | 9        | 47         |
| 1975         | 24       | 13       | 54         |
| 1976         | 24       | 10       | 42         |
| 1977         | 24       | 12       | 50         |

The number of nest-boxes ranged from 11 to 24, while the Starling population varied from 9 to 16 pairs. The ratio of nests to nest-boxes was highest in 1969 (84 %), gradually decreasing after that. During the last years about half the nest-boxes were occupied.

Nest building and egg-laying. The male starts building the nest before the

TABLE 1. Dates of arrival of the first Starling (A) and beginning of breeding (B) in the main study area.

| Year |    | Α     |    | В     |
|------|----|-------|----|-------|
| 1966 | 22 | March | 2  | May   |
| 1967 | 14 | March | 1  | May   |
| 1968 | 23 | March | 26 | April |
| 1969 | 5  | April | 30 | April |
| 1970 | 7  | April | 5  | May   |
| 1971 | 28 | March | 30 | April |
| 1972 | 28 | March | 3  | May   |
| 1973 | 23 | March | 29 | April |
| 1974 | 30 | March | 28 | April |
| 1975 | 26 | March | 30 | April |
| 1976 | 10 | April | 2  | May   |
| 1977 | 24 | March | 2  | May   |
| Mean | 25 | March | 30 | April |

female arrives, and after that both build together and the female finishes the work (WITHERBY et al. 1949). In the study area the building time was 3-10 days ( $\overline{x} = 6.5$ ,  $\mathcal{N} = 27$ ). In one case reported in Finland, the nest building took 5 days (v. HAARTMAN 1969).

Unpaired males frequently carry fresh green leaves into the nest-box (SCHNEIDER 1960). This phenomenon occurred every year in my study area. During the last years leaf carrying became more frequent, in parallel with the decrease of the breeding population.

Most Starlings laid the first egg in early May (Table 2). The date varied from 24 April to 5 May, averaging 1 May. The annual variation in the onset of breeding was small, however; in the 12 study years, the median date of the first egg varied by only 9 days (30 April through 8 May). In the total material, the median date of first egg was 5 May.

In 1967, 1968 and 1977, egg-laying was well synchronized in the population; in 1968 the Starlings laid their first eggs almost simultaneously (Fig. 1). This arises from the sociality of Starlings (SCHNEIDER 1960). Each year the start of egg-laying was preceded by a sharp increase in the daily mean temperature, occurring about 6 to 7 days earlier. In the yards (N = 54), the median date of the first egg was 3 days earlier than that in the remote fields (N = 17).

Late breeding is exceptional for the Starling (v. HAARTMAN 1969). In my data only 3 nests were started in June (N = 165). In the village of Varpula in Kauhava a brood of Starling was ringed as late as 17 July 1977, which indicates that breeding had started in mid-June.

Probable repeat nesting was observed in four cases. Eggs were laid in the same nest-box where a nest had been destroyed 7 to 11 days earlier. Nesting is usually not repeated if the nest is destroyed during the nestling period (v. HAARTMAN 1969).

The Starling lays an egg a day almost regularly (SCHNEIDER 1960). Dur-

TABLE 2. The start of laying for the first (A) and last female (B) in the Starling population studied and the median date of the first egg laid (M), i.e. the date when half the females had started egg-laying.

| Year |    | Α          |    | М     |    | В    | Ν  |  |
|------|----|------------|----|-------|----|------|----|--|
| 1966 | 2  | May        | 6  | May   | 9  | June | 14 |  |
| 1967 | 1  | May        | 5  | May   | 19 | May  | 21 |  |
| 1968 |    | April      | 30 | April | 13 | May  | 28 |  |
| 1969 | 30 | April      | 3  | May   | 4  | June | 14 |  |
| 1970 | 5  | <b>May</b> | 7  | May   | 16 | May  | 6  |  |
| 1971 | 30 | April      | 7  | May   | 14 | May  | 10 |  |
| 1972 | 3  | May        | 5  | May   | 10 | May  | 12 |  |
| 1973 | 29 | April      | 2  | May   | (4 | May) | 4  |  |
| 1974 | 28 | April      | 6  | May   | Ì2 | May  | 8  |  |
| 1975 | 30 | April      | 4  | May   | 23 | May  | 17 |  |
| 1976 | 2  | Ŵау        | 8  | May   | 13 | May  | 13 |  |
| 1977 |    | May        | 4  | May   | 14 | May  | 18 |  |
| Mean | 1  | May        | 5  | May   | 18 | May  | 14 |  |

J

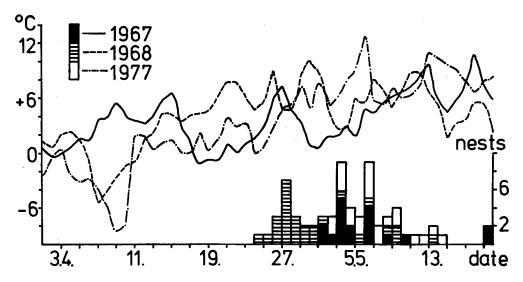



FIG. 1. The beginning of breeding in the Starling during the years 1967, 1968 and 1977 compared with the mean temperatures (°C) in April-May. The columns indicate the number of clutches started and the line indicates the mean temperature at the meteorological station in Ylistaro (ILMATIETEEN LAITOS 1967, 1968, 1977).

ing egg-laying, I inspected 73 nestboxes daily, sometimes even twice a day. The laying periods are presented in Table 3.

The greater the clutch size, the more intensive is egg-laying. In addition, the intensity of laying is affected by the weather, since cold and rainy weather can interrupt the laying for 1 or even 2 days.

Clutch size. The size of completed clutches ranged from 2 to 8, averaging 5.12 (Table 4). The most common size classes were 5 and 6 eggs (40.4 and  $33.3 \ 0/0$ , respectively). Nests with 2 and 8 eggs occurred only once.

Clutch size varied considerably between years being highest in 1970 and lowest in 1967 (5.86 and 4.62 eggs, respectively). Some annual differences were statistically significant (t-test).

The clutch size was significantly correlated with the laying time (r =

-0.86, df = 29,  $P < 0.001^{***}$ ). The regression equation for the clutch size y is

y = -0.06x + 7.61,

where x is the number of the day  $(1 = 1 \text{ April}, \dots 31 = 1 \text{ May, etc.})$ . The clutch size decreased linearly, the decrease averaging 0.06 eggs per day towards the end of the breeding season (Table 5). The modal clutch size was

TABLE 3. Laying periods for Starling clutches of different sizes.

| Number  | Laying | g period (day | s) |
|---------|--------|---------------|----|
| of eggs | Mean   | SD            | N  |
| 3       | 3.4    | 1.1           | 5  |
| 4       | 4.2    | 0.8           | 12 |
| 5       | 5.2    | 0.5           | 23 |
| 6       | 6.0    | 0.2           | 26 |
| 7       | 6.7    | 0.8           | 6  |
| 8       | (8.0)  | (0.0)         | 1  |

TABLE 4.Annual variation in the clutch sizeof the Starling in Southern Ostrobothnia.

|       |   |          |    | Clu | tch | size | : |                  |     |
|-------|---|----------|----|-----|-----|------|---|------------------|-----|
| Year  | 2 | 3        | 4  | 5   | 6   | 7    | 8 | $\bar{x} \pm SD$ | N   |
| 1966  |   |          | 3  | 3   | 6   | 1    | _ | $5.15 \pm 1.34$  | 13  |
| 1967  |   | 4        | 4  | 9   | 4   |      |   | $4.62 \pm 1.02$  | 21  |
| 1968  |   | 2        | 5  | 10  | 10  | 2    |   | $5.17 \pm 1.04$  | 29  |
| 1969  |   | 2        | 3  | 3   | 4   | 1    |   | $4.92 \pm 1.26$  | 13  |
| 1970  | _ |          | _  | 3   | 2   | 2    |   | $5.86 \pm 0.90$  | 7   |
| 1971  |   | <u> </u> | 1  | 4   | 6   | _    |   | $5.45 \pm 0.69$  | 11  |
| 1972  |   | 1        | 2  | 6   | 3   | 1    |   | $5.08 \pm 1.04$  | 13  |
| 1973  |   | 1        | 2  | 3   | 4   |      |   | $5.00 \pm 1.05$  | 10  |
| 1974  |   | 1        | 3  | 4   | 2   |      | 1 | $5.00 \pm 1.34$  | 11  |
| 1975  |   |          | 1  | 9   | 7   | 1    |   | $5.44 \pm 0.70$  | 18  |
| 1976  |   |          | 2  | 9   | 5   | 1    |   | $5.29 \pm 0.77$  | 17  |
| 1977  | 1 | 5        | 1  | 18  | 13  |      |   | $4.97 \pm 1.08$  | 38  |
| Total | 1 | 16       | 27 | 81  | 66  | 9    | 1 | $5.12 \pm 1.02$  | 201 |

6 eggs for nests started in April, 5 eggs in the first half of May, 4 eggs in late May and 3 eggs in June. The mean clutch size was 5.6 eggs in April and 3.5 in June.

In 1971—77, the mean clutch size was 5.2 eggs (N = 57) in the yards and inhabited areas, and 4.6 (N = 21) in the remote fields. This difference is significant (t-test; t = 2.77, df = 76,  $P < 0.01^{**}$ ).

Incubation and hatching. Intensive incubation begins as soon as the clutch is completed (v. HAARTMAN 1969). Data pooled over the years give the following frequency distribution for the incubation period (days):

| Incubation<br>period | 11 | 12 | 13 | 14 | $\overline{x} \pm SD$ | N  |
|----------------------|----|----|----|----|-----------------------|----|
| Nests                | 11 | 48 | 5  | 3  | $12.0 \pm 0.6$        | 67 |

The incubation period thus lasted 11 to 14 days, the mode being 12 days.

The incubation period of the Great Tit Parus major shortens towards the end of the breeding season (v. HAART-MAN 1969). This phenomenon does not occur in the Starling (Table 6). The variation in the length of the incubation period is negligible and not significant.

The synchronization of hatching was observed in 60 nests. In one quarter of the cases, all the nestlings in a clutch hatched within 24 hours, and in half the interval between the hatching of the first and last chick was 24-48 hours. In 13 cases, the difference between the first and last hatching was 2 days and in one case 3 days.

If we exclude eggs that disappeared or were destroyed or deserted (these eggs are considered later), the mean hatching sucess for the Starling clutches was  $87.0 \ 0/0$ . The smallest proportion of unhatched eggs was found in clutches of 6 and 5 eggs (Table 7). Hatching is therefore most successful in clutches of the common size.

TABLE 5. Seasonal variation in the clutch size of the Starling in Southern Ostrobothnia.

| Date of the   | Clutch size |   |   |    |    |   |   |                       |    |  |
|---------------|-------------|---|---|----|----|---|---|-----------------------|----|--|
| first egg     | 2           | 3 | 4 | 5  | 6  | 7 | 8 | $\overline{x} \pm SD$ | N  |  |
| 24-30 April   |             | 1 | 1 | 6  | 13 | 2 | _ | $5.6 \pm 0.9$         | 23 |  |
| 1—5 May       |             | 1 | 4 | 20 | 19 | 5 | 1 | $5.5 \pm 0.9$         | 50 |  |
| 6-10 May      | ·           | 2 | 8 | 26 | 19 | 3 | _ | $5.2 \pm 0.9$         | 58 |  |
| 11-20 May     | 1           | 4 | 2 | 9  | 1  | - |   | $4.3 \pm 1.1$         | 17 |  |
| 21-30 May     |             | 1 | 3 | 2  |    |   |   | $4.2 \pm 0.8$         | 6  |  |
| 31 May 9 June |             | 2 | 2 |    |    |   |   | $3.5 \pm 0.6$         | 4  |  |

Nestling period. The records on the nestling period (days) during the years 1966-77 were as follows:

| Nestling<br>period | 17 | 18 | 19 | 20 | 21 | 22 | 23 | x    | N  |
|--------------------|----|----|----|----|----|----|----|------|----|
| Nests              | 1  | 1  | 5  | 17 | 6  | 1  | 3  | 20.2 | 34 |

The nestling period thus varied from 17 to 23 days with a mean of 20.2 days.

The age distribution of nestlings (in days) that died in the nest was (M = median life of dead nestlings):

| Age<br>(days)                             | Young dying<br>in the nest |
|-------------------------------------------|----------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 18                         |
| 2                                         | 9                          |
| 3                                         | 6                          |
| 4                                         | 6                          |
| 5                                         |                            |
| 6                                         | 4                          |
| 7                                         | 3                          |
| 8                                         | 2                          |
| 9                                         | 3                          |
| 10                                        | 4<br>4<br>3<br>2<br>3<br>5 |
| 11                                        | 4                          |
| 12                                        | 1                          |
| 14                                        | 1                          |
| 15                                        | 1                          |
| 16                                        | ī                          |
| 17                                        | 3                          |
| 20                                        | 1                          |
| м                                         | 4                          |
| N                                         | 72                         |
|                                           |                            |

Fifty-four per cent of nestling mortality occurred during the first 4 days after hatching. During the following 16 days mortality was low and decreased with increasing age of the nestlings.

Nesting success. Table 8 gives complete records for 145 nests during the years 1966-72 and 1974-77. The

TABLE 6.Seasonal variation in the incubationperiod of the Starling.

| Date of the         | Time of incubation (days)                            |                                                                          |  |  |  |  |  |  |
|---------------------|------------------------------------------------------|--------------------------------------------------------------------------|--|--|--|--|--|--|
| first egg           | 11 12 13 14                                          | $\bar{x} \pm SD N$                                                       |  |  |  |  |  |  |
| 24—30 April         | 2 6 3 1                                              |                                                                          |  |  |  |  |  |  |
| 1—5 May<br>6—10 May | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{rrrr} 11.9 \pm 0.6 & 26 \\ 12.1 \pm 0.6 & 20 \end{array}$ |  |  |  |  |  |  |
| 11-31 May           | 2 2 1                                                |                                                                          |  |  |  |  |  |  |

proportion of eggs lost averaged 17.5  $^{0}/_{0}$ , and that of nestlings 16.0  $^{0}/_{0}$ . The total losses were 30.7  $^{0}/_{0}$ ; hence 69.3  $^{0}/_{0}$  of the eggs produced fledged young.

Unhatched eggs were the most common reason for egg losses. Part of them were unfertilized, but more often the embryo died during incubation. Young dying in the nest caused the main part of losses during the nestling period. Mortality due to predation was not observed.

The mean number of young fledged in a clutch was 3.6. The productivity was highest in 1971 (5.2) and lowest in 1967 (2.6). Thus, the breeding success shows great annual variation.

LACK (1948) reported that 5-egg Starling clutches produced as many fledged young as larger clutches. Accordingly, LACK (1966) suggested that in birds in general the most common clutch size has the most viable offspring. In my data, the most productive clutches were those with 7, 6 and 5 eggs.

## Discussion

Population changes. In my main study area, the breeding Starling population decreased since 1974. In two other yards in Kauhava, the trend was similar and even more marked. In north-

| Clutch |    |    | Unł | natched | eggs |   |   | Clutcher | Faar | Tinhatahad | %    |
|--------|----|----|-----|---------|------|---|---|----------|------|------------|------|
| size   | 0  | 1  | 2   | 3       | 4    | 5 | 6 | Glutenes | rggs | Unhatched  | 70   |
| 2      | 1  |    |     |         |      |   |   | 1        | 2    | 0          | 0.0  |
| 3      | 2  | 3  | 1   |         |      |   |   | 6        | 18   | 5          | 27.8 |
| 4      | 10 | 10 | 1   |         | 1    |   |   | 22       | 88   | 16         | 18.2 |
| 5      | 30 | 21 | 6   | _       | 1    |   |   | 58       | 290  | 37         | 12.8 |
| 6      | 33 | 13 | 1   | 2       | 1    |   | 1 | 51       | 306  | 31         | 10.6 |
| 7      | 3  | 5  |     | 2       |      | — | _ | 10       | 70   | 11         | 15.7 |
| 8      |    |    | 1   |         |      |   |   | 1        | 8    | 2          | 25.0 |
| Total  | 79 | 52 | 10  | 4       | 3    | 0 | 1 | 149      | 782  | 102        | 13.0 |

TABLE 7. Unhatched eggs in relation to clutch size in the Starling.

ern Finland ( $64^{\circ}$ — $65^{\circ}$ N), observations made on seven different populations from the early 1960s onwards show that a strong decrease has taken place in recent years (ALATALO 1975, HIR-VELÄ 1977, OJANEN et al. 1978b). At Lemsjöholm ( $60^{\circ}30'$ N,  $21^{\circ}27'$ E), SW Finland, the number of Starling nests in 29—47 nest-boxes has decreased catastrophically, from 15-35 during the years 1962-75 to 2-6 in 1976-78 (v. HAARTMAN 1978a, b). In Salo  $(60^{\circ}21'N, 23^{\circ}06'E)$ , the trend has been similar (v. KNORRING 1978). According to these records, the breeding populations of Starlings started to decrease in Finland in the 1970s. Possible reasons for this must be looked for either

| TABLE 8. Losses of eggs and nestlings, and nesting success in Kauhava. | TABLE 8 | 3. | Losses | of | eggs | and | nestlings, | and | nesting | success | in | Kauhava. |
|------------------------------------------------------------------------|---------|----|--------|----|------|-----|------------|-----|---------|---------|----|----------|
|------------------------------------------------------------------------|---------|----|--------|----|------|-----|------------|-----|---------|---------|----|----------|

|                                        | 1966    | 1967       | 1968     | 1969     | 1970        | 1971       | 1972       | 1974       | 1975 | 1976       | 1977       | Total       |
|----------------------------------------|---------|------------|----------|----------|-------------|------------|------------|------------|------|------------|------------|-------------|
| No. of nests examined                  | 10      | 16         | 22       | 11       | 6           | 10         | 12         | 10         | 14   | 12         | 22         | 145         |
| Total of eggs laid                     | 53      | 74         | 117      | 55       | 36          | 55         | 62         | 47         | 74   | 64         | 113        | 750         |
| Unhatched                              | 6       | 12         | 15       | 5        | 6           | 2          | 4          | 4          | 5    | 8          | 7          | 74          |
| Disappeared                            | 1       | 6          | 5        | 0        | 0           | 0          | 0          | 0          | 12   | 5          | 6          | 35          |
| Broken in nest                         | 0       | 0          | 0        | 0        | 5           | 0          | 0          | 1          | 0    | 0          | 0          | 6           |
| Deserted                               | 0       | 3          | 5        | 8        | 0           | 0          | 0          | 0          | 0    | 0          | 0          | 16          |
| Total of eggs lost                     | 7       | 21         | 25       | 13       | 11          | 2          | 4          | 5          | 17   | 10         | 10         | 101         |
| Percentage of eggs lost                | 13.2    | 28.4       | 21.4     | 23.6     | 30.6        | 3.6        | 6.5        | 10.6       | 23.0 | 13<br>20.3 | 13<br>11.5 | 131<br>17.5 |
| Total of young batched                 | 4.6     | <b>E</b> 0 |          | 40       | 0.5         |            |            |            |      |            |            |             |
| Total of young hatched<br>Died in nest | 46<br>7 | 53         | 92       | 42       | 25          | 53         | 58         | 42         | 57   | 51         | 100        | 619         |
| Total of fledglings                    | 39      | 11<br>42   | 22       | 8        | 1           | 1          | 5          | 8          | 4    | 6          | 26         | 99          |
| Loss of whole brood                    | 39<br>0 |            | 70       | 34       | 24          | 52         | 53         | 34         | 53   | 45         | 74         | 520         |
|                                        |         | 3          | 5        | 3        | 1           | 0          | 0          | 2          | 2    | 1          | 4          | 21          |
| Total of nestlings lost                | 7       | 11         | 22       | 8        | 1           | 1          | 5          | 8          | 4    | 6          | 26         | 99          |
| Nestlings lost (%)                     | 13.2    | 14.8       | 18.8     | 14.6     | $2.\hat{7}$ | 1.9        | 8.6        | 19.0       | 7.0  | 11.8       | 26.0       | 16.0        |
| Total loss percentage                  | 26.4    | 43.2       | 40.2     | 38.2     | 33.3        | 5.5        | 14.5       | 27.7       | 28.4 | 29.6       | 34.5       | 30.7        |
| Eggs per nest                          | 5.3     | 4.6        | 5.3      | 5.0      | 6.0         | 5.5        | 5.2        | 47         |      |            |            |             |
| Hatched young per nest                 |         | 3.3        | 4.2      | 3.8      | 6.0<br>4.2  | 5.5<br>5.3 |            | 4.7        | 5.3  | 5.3        | 5.1        | 5.2         |
| Fledglings per nest                    | 3.3     | 2.6        | 3.2      | 3.0      | 4.2         | 5.3        | 4.8<br>4.8 | 4.2<br>3.4 | 4.1  | 4.3        | 4.6        | 4.3         |
|                                        |         |            | <u> </u> | <u> </u> | 7.0         | J.4        | 4.0        | 3.4        | 3.8  | 3.8        | 3.4        | 3.6         |

in the breeding area or in the wintering area in Western Europe.

Changes in Finnish agriculture have obviously affected the environment of the Starling. DUNNET (1955) reported that Starlings do not forage in high grass. Accordingly, the recent abandonment of fields in Finland has reduced their feeding areas. The decrease of cattle grazing and the increase of land under crops has had the same effect; in addition, the latter development has increased the use of herbicides. Unsuitable weather cannot be the reason for the decline, because the nesting success did not decrease in the 1970s.

In the wintering area in Western Europe, the Starling has been persecuted because it causes damage in gardens and fruit plantations (SCHNEIDER 1960). This may be an additional reason for the decline in its breeding populations.

Timing of breeding. According to the Finnish nest-card material, most Starlings start breeding on 1-5 May in southern Finland (60°-62°N) and on 6—10 May in central Finland ( $62^{\circ}$ --64°N) (v. HAARTMAN 1969). southern Finland the proportion In of clutches initiated in April was  $16.5 \, ^{\circ}/_{\odot}$ . while from central Finland no records of egg-laying in April are known. In my area, no less than 18.5 % of the clutches were laid in April, and breeding most often started in early May. Suitable weather conditions may be the reason for this early breeding, because in Southern Ostrobothnia the temperature is higher and there is generally less snow than elsewhere in central Finland. The Starling also arrives early in the area (LEHTORANTA 1952). In northern Finland (north of 64°N), breeding usually starts on 11— 15 May and there are only four known cases of egg-laying in late April —

early May (v. HAARTMAN 1969, ALA-TALO 1975.

I investigated the influence of temperature on the onset of breeding in the Starling by calculating the correlation between the median date for the start of egg-laying and the mean temperature of 5-day periods (ILMATIE-TEEN LAITOS 1966—77) during the years 1966—77. The mean temperature for the period from 21 April to 5 May had the greatest influence on the timing of breeding (r = -0.74, df = 10,  $P < 0.01^{**}$ ). If the period for which the mean temperature is calculated is shifted towards early April or late May, the correlation decreases.

A rapid increase in temperature in late April thus stimulates the egglaying of the Starling, whereas a warm period in mid-April has no effect (see Fig. 1). In the male Starling, the final development of the gonads is regulated by daylength (BURGER 1949, 1953). Another factor influencing the growth of the gonads is the weather (BURGER 1948, BULLOUGH 1942), and this is probably the main reason for the observed annual variations of up to 1 week in the timing of breeding in my study area (see Kessel 1957). The period of about 1 week elapsing between the temperature rise and the start of egg-laying is the time needed for the development of an egg (SEEL 1968).

Clutch size. The clutch size of the Starling varies with the season, year and region. According to my data and the observations of v. HAARTMAN (1969) and ALATALO (1975), the Starling is one of the species whose clutch size decreases linearly through the breeding season (see KLOMP 1970). The clutch size is greater near houses than in remote fields because breeding starts about 3 days later in the fields. Nest-boxes near houses are occupied before those in fields (v. HAARTMAN et al. 1963-1972).

The annual variation in clutch size is not due to differences in the timing of breeding, as clutch size does not correlate with the onset of egg-laying. On the other hand, clutch size is affected by the temperature during egglaying (Table 9). The higher the temperature during this period, the greater the clutch size (r = 0.78, df = 10, $P \leq 0.01^{**}$ ). If the weather is bad, the female presumably has difficulties in finding food and the energy available for the developing eggs decreases. Egg-laying can be interrupted for one or even two days during cold weather. The temperature during egg-laying also affects clutch size in the Reed Bunting Emberiza schoeniclus (HAUKI-01A 1970).

In most birds clutch size increases towards the north (e.g. CODY 1966, LACK 1966, 1968). If the results from the SW archipelago are excluded, the clutch size of the Starling in Finland increases markedly with increasing latitude (Table 10). In the archipelago, exceptional ecological factors may be responsible for a higher clutch size than on the mainland, since TENOVUO

TABLE 9. Mean daily temperatures (°C) in Ylistaro for the period extending from 5 days before to 5 days after the mean laying date, and the mean clutch sizes of the Starling in 1966-77.

| Year | Period         | °C         | Clutch siz |
|------|----------------|------------|------------|
| 1966 | 1—10 May       | 4.8        | 5.2        |
| 1967 | 30 April—9 May | 4.0<br>3.0 | 4.6        |
| 1968 | 25 April—4 May | 6.1        | 5.2        |
| 1969 | 28 April—7 May | 4.9        | 4.9        |
| 1970 | 2-11 May       | 8.3        | 5.9        |
| 1971 | 2-11 May       | 7.9        | 5.5        |
| 1972 | 30 April—9 May | 7.2        | 5.1        |
| 1973 | 27 April-6 May | 4.8        | 5.0        |
| 1974 | 1—10 May       | 3.1        | 5.0        |
| 1975 | 29 April—8 May | 8.7        | 5.4        |
| 1976 | 3—12 May       | 7.9        | 5.3        |
| 1977 | 29 April—8 May | 7.0        | 5.0        |

& LEMMETYINEN (1970) found a larger clutch size on islands near the open sea than in the vicinity of the coastline.

The regional trend in the clutch size of the Starling is not linear for the whole of Europe (Table 10). However, in North America the clutch size increases with increasing latitude (ROYALL 1966, KESSEL 1957, COLLINS & DE VOS 1966). The general regional trend may be masked by temporal and

TABLE 10. Clutch size of the Starling in different areas of Europe.

| Area                                | x    | N    | Source                     |  |  |
|-------------------------------------|------|------|----------------------------|--|--|
| N Ostrobothnia (65°–66°N)           | 5.27 | 78   | Ojanen et al. 1978a        |  |  |
| Oulu $(65^{\circ}N)$                | 5.44 | 66   | Alatalo 1975               |  |  |
| S Ostrobothnia (63°N)               | 5.12 | 201  | Present study              |  |  |
| S Finland $(60^\circ - 62^\circ N)$ | 4.94 | 149  | v. Haartman 1969           |  |  |
| SW Finland (60°35'N)                | 5.29 | 58   | TENOVUO & LEMMETYINEN 1970 |  |  |
| Total Finland                       | 5.15 | 552  |                            |  |  |
| Holland (52°N)                      | 5.14 | 1785 | KLUIJVER 1933              |  |  |
| Germany (51°N)                      | 5.07 | 310  | Schneider 1960             |  |  |
| Czechoslovakia                      | 4.69 | 132  | PIKULA & FOLK 1970         |  |  |
| Switzerland                         | 5.15 | 246  | Schifferli 1957            |  |  |
| Scotland                            | 4.92 | 335  | DUNNET 1955, ANDERSON 1961 |  |  |
| England                             | 4.88 | 105  | LACK 1948                  |  |  |

TABLE 11. The average productivity of the Starling for some areas in Europe measured by the number of young fledged per clutch.

| Area           | $\overline{x}$ | Source             |  |  |
|----------------|----------------|--------------------|--|--|
| Oulu           | 3.4            | Alatalo 1975       |  |  |
| S Ostrobothnia | 3.6            | present study      |  |  |
| SW Finland     | 1.9            |                    |  |  |
| +              |                | Lemmetyinen 1970   |  |  |
| Holland        | 4.1            | KLUIIVER 1933      |  |  |
| Holland        | 2.5            | Westerterp 1973    |  |  |
| Germany        | 4.0            | Schneider 1960     |  |  |
| Czechoslovakia | 4.0            | HAVLIN & FOLK 1961 |  |  |
| Switzerland    | 4.3            | SCHIFFERLI 1957    |  |  |
| England        | 3.5            | LACK 1948          |  |  |

local variation depending on the food supply, habitat, age of the female and population density (LACK 1966).

There are many theories on the determination of clutch size in birds (e.g. LACK 1966, 1968, CODY 1966, SKUTCH 1967). Together with several other studies, this paper supports the conclusion that the clutch size of the Starling is dependent on the allocation of energy between breeding, avoidance of predators and the struggle with competitors (CODY 1966).

Nesting success. The number of young fledged in my study area averaged 3.6. In Oulu, during nearly the same period, the number was slightly smaller (ALATALO 1975), although the clutch size was clearly greater. In the SW archipelago of Finland productivity was extremely small due to adverse conditions (TENOVUO & LEMME-TYINEN 1970). Comparison of these records with other data suggests that the Starling may be slightly less productive in Finland than in Continental Europe and the British Isles (Table 11).

COLLINS & DE VOS (1966) reported that hatching success is dependent on the timing of breeding. In their study area in Canada  $(44^{\circ}N, 80^{\circ}W)$  the hatching percentage was highest in the years when breeding was late. In my data, the timing of breeding and the temperature during incubation did not affect hatching success.

The young that die in the nest are usually those that hatch last. The same observation has been made earlier (e.g. DUNNET 1955, ANDERSON 1961). More than half of the nestling mortality occurred during the first 4 days. There is evidence that temperature affects mortality closely during the early nestling period (KORPIMÄKI 1977), when the thermoregulation of the nestlings is poorly developed (KENDEIGH & BALDWIN 1928).

Acknowledgements. Valuable advice on writing this paper was given by Erkki Pulliainen, Seppo Sulkava, Rauno Alatalo and Kauko Huhtala. I am also grateful for breeding records on the Starling placed at my disposal by Reijo Passinen, Reima Haapoja, Reijo Rajala, Ossi Hemminki, Jarmo Kirkkomäki and Sakari Ikola. Risto Alatalo kindly translated this paper into English and Robert Brown checked the language. Olavi Hildén and Martti Soikkeli read the manuscript and made suggestions for its improvement.

## Selostus: Kottaraisen pesimäbiologiasta Etelä-Pohjanmaalla

Kottaraisen pesimäbiologiaa on tutkittu Kauhavalla Ruotsalan kylässä (63°05'N, 23°06'E) maalaistalon pihassa. Osa aineistosta on peräisin myös muualta Kauhavan alueelta sekä Lapuan kirkonkylästä. Pesimätietoja on vuosilta 1966–77 yhteensä 239 pesästä.

Kottaraiset ovat vähentyneet suuresti edellisen vuosikymmenen määristä Etelä- ja Pohjois-Pohjanmaalla sekä Lounais-Suomessa. Mahdollisiksi syiksi todetaan muutokset maataloudessa (herbisidien käytön lisääntyminen, peltojen paketointi, laiduntamisen väheneminen, viljanviljelyn lisääntyminen) ja/tai vaino talvehtimisalueilla.

Ensimmäiset kottaraiset saapuivat tutkimusalueelle useimmiten maaliskuun lopulla ( $\bar{x} = 25.3.$ ). Pesän rakentaminen kesti tavallisimmin 6—7 vrk. Puolet populaatiosta alkoi munia vuosina 1966—77 30.4.—8.5. ( $\bar{x} = 5.5$ ). Kevätmuuton alkamisesta ei voitu luotettavasti ennustaa pesinnän ajoittumista. Sen sijaan lämpötila nousi nopeasti noin viikkoa ennen kuin pääosa naaraista alkoi munia (kuva 1).

Munaluku vaihteli rajoissa 2-8, keskiarvo 5.12. Pesyekoko oli riippuvainen muninta-ajasta erittäin merkitsevästi väheten suoraviivaisesti pesimäkauden loppua kohti. Asutuksen piirissä munaluku oli selvästi suurempi kuin syrjäisillä pelloilla, joilla pesintä alkoi keskimäärin kolme päivää myöhemmin.

Haudonta kesti useimmiten 12 ja pesäpoikasaika 20 päivää. Munavaiheen tappiot (17.5 %) olivat suuremmat kuin pesäpoikasajan (16.0 %). Keskimääräinen poikastuotto oli 3.6 poikasta/pesä.

Valo säätelee kottaraisen pesinnän ajoittumista, mutta vuosien väliset erot ovat aiheutuneet huhtikuun lopun ja toukokuun alun lämpötilasta. Pesyekoon vuosittainen vaihtelu oli riippuvainen muninta-ajan lämpötiloista. Tämä selitettiin Copyn (1966) yleisellä teorialla munaluvun määräytymisestä.

Pesinnän onnistumisen kannalta kriittinen vaihe oli kuoriutumis- ja varhainen pesäpoikasaika, sillä ensimmäisen neljän elinpäivän aikana poikasten lämmönsäätely on vielä heikosti kehittynyt. Eteläisenä lajina kottaraisen todettiin olevan herkkä lämpötilan muutoksille. Ne vaikuttivat joko suoraan tai epäsuorasti pesinnän ajoittumiseen ja onnistumiseen sekä pesyekokoon.

Taulukoissa on esitetty seuraavat tiedot: 1. kevätmuuton ja pesinnän alkamisen riippuvuus toisistaan, 2. pesinnän ajoittuminen, 3. eri kokoisten pesyeiden munintanopeus, 4. munaluvun vuosittainen vaihtelu, 5. munaluvuun vuodenaikainen vaihtelu, 6. haudonta-ajan vuodenaikainen vaihtelu, 7. kuoriutumatta jääneet munat suhteessa pesyekokoon, 8. pesinnän onnistuminen ja tuhoutumisen syyt, 9. munintaajan lämpötilan vaikutus munalukuun, 10. munalukuja ja 11. poikastuottoja eri puolilla Eurooppaa.

#### References

- ALATALO, R. 1975: Pesimätietoja kottaraisesta Oulussa. — Suomenselän Linnut 10:118— 119, 122—124.
- ANDERSON, A. 1961: The breeding of the Starling in Aberdeenshire. — Scottish Nat. 70:60—74.
- BULLOUGH, W. S. 1942: The reproductive cycles of the British and Continental races of the Starling (Sturnus vulgaris L.). — Philos Trans. B. 231:165—246.

- BURGER, J. W. 1948: The relation of the external temperature to spermatogenesis in the male Starling. — J. Exp. Zool. 109: 257—266.
- BURGER, J. W. 1949: A review of experimental investigations in seasonal reproduction in birds. → Wilson Bull. 61:211-230.
- BURGER, J. W. 1953: The effect of photic and psychic stimuli on the reproductive cycle of the male Starling, Sturnus vulgaris. — J. Exp. Zool. 124:227—239.
- CODY, M. L. 1966: A general theory of clutch size. — Evolution 20:174—184.
- Collins, V. B. & A. de Vos 1966: A nesting study of the Starling near Guelph, Ontario. — Auk 83:623—636.
- CROSSNER, K. A. 1977: Natural selection and clutch size in the European Starling. — Ecology 58:885—892. DUNNET, G. M. 1955: The breeding of the
- DUNNET, G. M. 1955: The breeding of the Starling Sturnus vulgaris in relation to its food supply. — Ibis 97:619—662.
- v. HAARTMAN, L. 1969: The nesting habits of Finnish Birds I. Passeriformes. — Comm. Biol. Soc. Sci. Fennici 32:1—187.
- v. HAARTMAN, L. 1978a: Severe decrease in a population of Starlings. — Ornis Fennica 55:40—41.
- v. HAARTMAN, L. 1978b: Ny nedgång i starpopulationen i holkar på Lemsjöholm. — Ornis Fennica 55:83.
- v. HAARTMAN, L., O. HILDÉN, P. LINKOLA, P. SUOMALAINEN & R. TENOVUO 1963—72: Pohjolan linnut värikuvin. — Helsinki.
- HAUKIOJA, E. 1970: Clutch size of the Reed Bunting Emberiza schoeniclus. — Ornis Fennica 47:101—135.
- HAVLIN, J. & C. FOLK 1961: The breeding season and number of young in the Starling, Sturnus vulgaris L., in Czhechoslovakia. — Zool. Listy 10:67—84.
- HIRVELÄ, J. 1977: Kottaraisen (Sturnus vulgaris) pesivästä kannasta Limingassa 1967 —76. — Aureola 2:73—75.
- ILMATIETEEN LAITOS 1966—77: Kuukausikatsaus Suomen ilmastoon. Huhti-kesäkuu.
- KENDEIGH, S. Ch. & S. P. BALDWIN 1928: Development of temperature control in nestling House Wrens. — Amer. Nat. 62: 249—278.
- KESSEL, B. 1953: Second broods in the European Starling in North America. — Auk 70:479—483.
- KESSEL, B. 1957: A study of the breeding biology of the European Starling (Sturnus vulgaris L.) in North America. — Amer. Midl. Nat. 58:257—331.
- KLOMP, H. 1970: The determination of clutch size in birds. A review. — Ardea 58:1— 124.

- KLUIJVER, H. N. 1933: Bijdrage tot de biologie en de oecologie van den Spreeuw (Sturnus vulgaris vulgaris L.) gerudende zijn voortplantigstijd. — Versl. Meded. Plantenziektek. Dienst 69:1-145.
- v. KNORRING, J. 1978: Nedgång i en starpopulation i Salo. - Ornis Fennica 55:82.
- KORPIMÄKI, E. 1969: Kottaraisen pesimäbiologiasta Kauhavalla vuosina 1966---68. -Suomenselän Linnut 4:38-40.
- KORPIMÄKI, E. 1975: Kottaraisen, Sturnus v. vulgaris, pesäpoikasten painon kehityksestä Kauhavalla. - Suomenselän Linnut 10: 4-10.
- KORPIMÄKI, E. 1977: Kottaraisen, Sturnus v. vulgaris, pesimäaikaisesta ekologiasta Kauhavalla vuosina 1966-77. – Manuscript, Dept. Zool. Univ. Oulu.
- LACK, D. 1948: Natural selection and family size in the Starling. - Evolution 2:95-110.
- LACK, D. 1966: Population studies of birds. ---Oxford.
- LACK, D. 1968: Ecological adaptations for breeding in birds. - London.
- LEHTORANTA, L. 1952: Der Frühlingszug des Stars, Sturnus vulgaris L., im Lichte der phänologischen Beobachtungen 1785-1930 in Finnland. - Comm. Biol. Soc. Sci. Fennici 11:1-20.
- LUNIAK, M. 1977: Abundance and productivity of broods of the Starling Sturnus vulgaris L., in Warzaw. — Acta Ornithol. 16:241 -274.
- OJANEN, M., M. ORELL & R. A. VÄISÄNEN 1978a: Egg and clutch sizes in four passerine species in northern Finland. --- Ornis Fennica 55:60-68.
- OJANEN, M., M. ORELL & E. MERILÄ 1978b: Population decrease of Starlings in northern Finland. — Ornis Fennica 55:38– 39.
- PALMGREN, P. 1930: Quantitative Unter-suchungen über die Vogelfauna in den Wäldern Südfinnlands mit besonderer Be-

rücksichtigung Ålands. - Acta Zool. Fennica 7:1-218.

- PIKULA, J. & C. FOLK 1970: Differential breeding in Corvus monedula, Sturnus vulgaris, Parus major and Fringilla coelebs in woodland and non-woodland habitats. - Zool. Listy 19:261-273.
- ROYALL, W. C. 1966: Breeding of the Starling in Central Arizona. - Condor 68:196-205.
- SCHIFFERLI, A. 1957: Über Legebeginn und Zweitbruten beim Star (Sturnus vulgaris) in der Schweiz. — Orn. Beob. 54:1-8.
- SCHNEIDER, W. 1952: Beitrag zur Lebensgeschichte des Stars, Sturnus v. vulgaris. -Beitr. Vogelkd. 3:27.
- SCNHEIDER, W. 1957: Ein weiterer Beitrag zur Lebensgeschichte des Stars, Sturnus v. vulgaris L. — Beitr. Vogelkd. 6:43—74. SCHNEIDER, W. 1960: Der Star. — Neue
- Brehm-Bücherei, Heft 248.
- SCHNEIDER, W. 1972: Sind Populationsstudien des Stars, Sturnus vulgaris L., noch von Bedeutung? - Beitr. Vogelkd. 18:310-346.
- SEEL, D. C. 1968: Breeding seasons of the House Sparrow and Tree Sparrow Passer spp. at Oxford. - Ibis 110:129-144.
- SKUTCH, A. F. 1967: Adaptive limitation of the reproductive rate of birds. - Ibis 109:579-599. Теноvuo, R. & R. Lemmetyinen 1970: Оп
- the breeding ecology of the Starling Sturnus vulgaris in the archipelago of southwestern Finland. — Ornis Fennica 47: 159-166.
- WESTERTERP, K. 1973: The energy budget of the nestling Starling Sturnus vulgaris, a field study. - Ardea 61:137-153.
- WITHERBY, H. F., C. R. JOURDAIN, N. F. TICEHURST & B. W. TUCKER 1949: The Handbook of the British Birds. I-V. -London.

Received March 1978, revised August 1978